
An Agent-Based Approach to Aircraft Conflict Resolution with Constraints 

 
Karen A. Harper,* Sean L. Guarino,† Aaron White,‡ and Mark L. Hanson§ 

Charles River Analytics 
Cambridge,  MA 02138 

 
Karl D. Bilimoria** and Daniel Mulfinger†† 

NASA Ames Research Center 
Moffett Field,  CA 94035 

 

ABSTRACT 

In recent years, much attention has been given to the development of emerging concepts of 

decentralized control within the National Airspace System (NAS). The introduction of a 

distributed decision-making environment in the ATM system will allow individual users (pilots 

and airline operations centers (AOC)) more freedom in changing and optimizing flight plans 

while enroute in comparison to the current pre-flight planning that happens now.  Such an 

approach to ATM system operations will require individual decision-makers within the airspace 

to identify and solve routing problems due to traffic conflicts, weather avoidance, and Special 

Use Airspace (SUA) dynamics, in real time.  In this paper, we apply a modeling and simulation 

based approach to investigate the potential for a principled negotiation-based approach to the 

distributed ATM problem.  The primary objective is to identify the frequency with which truly 

collaborative (i.e., negotiation) behavior may be required within realistic ATM operations. 
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INTRODUCTION 

Emerging concepts for future air traffic management (ATM) systems and procedures will 

dramatically change human roles and tasks in the National Airspace System (NAS).  The 

introduction of a distributed decision-making environment in the ATM system will allow 

individual users (pilots and airline operations centers (AOC)) more freedom in changing and 

optimizing flight plans while enroute in comparison to the current pre-flight planning that 

happens now (FAA, 1995).  By giving pilots and AOCs the capability to reroute while enroute, 

operations could be considerably streamlined, and significant improvements could be realized in 

fuel efficiency and schedule maintenance.  The introduction of this envisioned distributed 

decision-making (DDM) environment, however, will have profound implications on 

pilot/controller/AOC information requirements, roles and responsibilities, allocation of 

workload, communication, and decision-making throughout the ATM system. 

NASA and the FAA are focusing technical initiatives in the development of new systems-

level concepts for ATM operations, to meet the projected airspace demands of the future, while 

maintaining the overall safety of the NAS.  One such concept, free flight (RTCA, 1995) 

supported total autonomy on the part of pilots within the airspace, giving them full authority to 

self-separate, and perform enroute flight planning and replanning independent of air traffic 

control.  An evolved version of free flight, known as distributed air/ground traffic management 

(DAG-TM) (NASA, 1999) reconsidered the role of air traffic control in the future airspace and 

developed a concept of ATM operations that shares the decision-making authority among pilots 

and controllers, who are expected to behave cooperatively to optimize both individual and global 

operations, while maintaining safety as the highest priority.  Further efforts to investigate 

potential operational concepts are currently being pursued by NASA (Denery & Weathers, 

2001), through a research path addressing three primary objectives: 

1) To develop the tools and modeling capabilities for assessing the requirements of an advanced 
air transportation system; 

2) To conduct system-level assessments of new capabilities for ATM; and 

3) To develop the core technologies required to complete the goals of the Free Flight Program 
initiatives and set the foundations for the air transportation system beyond the Free Flight 
Program as currently defined. 

The ultimate objective of these ATM system redesign efforts is to generate new rules and 

protocols governing individual behavior of the key decision-makers in the air transportation 
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system, including pilots, air traffic controllers and airline dispatchers.  Because these decision-

makers will ultimately drive overall ATM system performance and safety, any M&S approach to 

system analysis must include realistic human behavior representations (HBRs) of the key 

decision-makers.  Furthermore, these HBRs must incorporate the underlying perceptual and 

cognitive capabilities and limitations that determine decisions made by these key players, if we 

are to capture realistic behaviors in the DDM environment. 

If computational agent-based instantiations of these HBRs can be successfully embedded in 

an appropriate ATM simulation, we will then be in a position to study the effects that specific 

DDM behaviors have on the overall performance of the ATM system.  This calls for significant 

flexibility in the HBR representations themselves, so that we can adjust individual behaviors and 

observe the effects that such adjustments have on overall system performance.  With this 

capability, we will then be able to identify the combined set of individual behaviors, procedures 

and protocols that optimize ATM system-level performance, with respect to safety and 

efficiency.  In effect, we will have an M&S tool that will allow us to evaluate emergent ATM 

performance/safety as a function of individual decisions made by the players. 

To support these objectives, this work has been focused on the development of an agent-

based modeling approach of human behavior, which allows us to investigate the feasibility of 

distributed control through principled negotiation (Jacolin & Stengel, 1998; Wangermann & 

Stengel, 1996) in the air traffic environment, and provides a testbed for new communications 

protocols, information requirements, and traffic management models. The principled negotiation 

approach to distributed decision-making involves the search for conflict resolution maneuvers 

that provide the greatest mutual gains with respect to each participating individual’s 

requirements. Following from previous efforts (Harper, Mulgund, Zacharias & Kuchar, 1998; 

Harper, Mulgund, Guarino, Mehta & Zacharias, 1999), we have furthered the development of 

agent-based models of pilot, air traffic controller, and airline dispatcher behavior.  The resulting 

agents are responsible for collaborating in a simulated advanced ATM environment to resolve 

traffic conflicts, weather problems, and restricted airspace avoidance issues in a safe, fair and 

timely manner.  

Under previous development efforts, we have demonstrated the capability of the agent-based 

models of collaborative decision-making to identify specific problems and solve them through 

democratic negotiation. In this paper, we are interested in now investigating the actual 
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requirements for truly collaborative decision-making in the ATM environment. Algorithmic 

conflict resolution and rerouting methods have been developed and demonstrated in the 

literature, and could be implemented within a real-time automated route planning and adjustment 

tool (Bilimoria, 2000; Krozel, Mueller & Hunter, 1996; Tomlin & Pappas, 1998).  The question 

now becomes whether these automated methods are sufficient to support separation maintenance 

and hazard avoidance, or if more involved distributed control strategies are required to maintain 

the efficiency and safety of the NAS. 

The paper is outlined as follows.  First, we provide the technical background underlying the 

development of our agent-based models of human decision-making and collaboration through 

principled negotiation.  We then present an overview of the knowledge engineering (KE) based 

model development process employed in the construction of agent-based representations of 

commercial pilots, air traffic controllers, and AOC dispatchers, followed by a summary of the 

results of the KE efforts.  This discussion concludes in a description of the information 

processing, situation assessment, and collaborative decision-making functions developed across 

the three targeted agent models.  We then present an overview of the integrated system 

architecture that brings these models together within the simulated air traffic environment 

provided by the Future ATM Concepts Evaluation Tool (FACET) (Bilimoria, Srindhar, 

Chatterji, Sheth & Grabbe, 2000).  To support the experimental objective of this paper, we then 

describe a simulated air traffic scenario that incorporates realistic traffic, weather, and SUA 

dynamics for Jacksonville Center (ZJX).  We populate this scenario with dynamic agent 

representations and analyze their collaborative problem-solving behavior to determine the level 

of complexity that can be expected in a distributed ATM environment, and the frequency and 

nature with which enroute flight adjustments must be truly negotiated among multiple decision-

makers within the system.  Finally, we present some conclusions and recommendations for 

further study. 

BACKGROUND 

Developing agent models of collaborative decision-making behavior among commercial 

pilots, air traffic controllers and AOC dispatchers are based on SAMPLE (Situation Assessment 

Model of Pilot-in-the-Loop Evaluation), an agent-based human behavior modeling architecture 

originally developed to model tactical aviation pilots, but designed within a domain-independent 

architecture. SAMPLE is based on a hierarchical definition of behavior, where the highest levels 
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represent ongoing cognitive tasks and the lowest levels define specific information processing, 

situation assessment, and procedurally-driven decision-making models. We believe that 

SAMPLE provides a strong agent-based modeling approach for advanced ATM environments, 

supporting the modular development of various agent representations. 

SAMPLE Overview 

The SAMPLE human behavior model is based on the Rasmussen Hierarchy of human 

information processing and skilled behavior (Rasmussen, 1983; Rasmussen, 1986), which 

provides a strong unifying theoretical framework for analysis of different human skills that may 

be modeled within a real-time simulation. By dividing skilled behavior into categories based on 

the degree of automaticity, complexity, and level of cognitive processing, this framework 

supports systematic skill decomposition and measurement of individual aspects of the overall 

skill on a part-task basis. 

SAMPLE implements the Rasmussen analysis in a system that has its roots in the Optimal 

Control Model (OCM) (Kleinman, Baron & Levison, 1970). This is an information-processing 

model of the operator of a dynamic system, grounded in modern control and estimation theory, 

which accounts for closed-loop human/machine performance across a range of primarily 

continuous control tasks (e.g., flight-path control). The first attempt to integrate continuous and 

discrete information processing with the structured procedural activities of the flight crew was 

with PROCRU, a model developed to evaluate commercial approach procedures during landing 

(Baron, Muralidharan, Lancraft & Zacharias, 1980; Milgram, van der Wijngaart, Veerbeek, 

Bleeker & Fokker, 1984). Here, the task of situation assessment was first made explicit, and 

linked to procedurally-driven rules of engagement. Finally, an enhanced model known as the 

crew/system integration model (CSIM) has been used for the analysis of anti-aircraft artillery 

crews (Zacharias, Baron, Muralidharan & Kastner, 1981), fighter attack missions (Zacharias & 

Baron, 1982), and in a precursor effort to the original SAMPLE development effort (Zacharias, 

Miao, Illgen, Yara & Siouris, 1996). 

The SAMPLE architecture combines elements of the Rasmussen Hierarchy and the CSIM 

model.  Figure 1 decomposes the SAMPLE model into its constituent conceptual components: 

1) An Information Processing module that processes information generated by the simulation, 

to yield system states and event cues; 
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2) A Situation Assessment module that uses event cues to generate the current assessed 

situation;  

3) A Decision Making and Procedure Execution module that selects among alternative 

procedures to produce control actions, based on the current situation and estimated states. 

The front end to the agent model’s SA-based decision-making model is the Information 

Processing system, which transforms fused sensor data into situationally relevant semantic 

variables. There are three algorithmic subcomponents to this system: Attention Allocation, 

Sensory Processing, and Perceptual Processing.  

The Attention Allocation subcomponent accounts for the human’s sensory limitations and 

defines attention allocation among competing sources of information.  This subcomponent 

reflects the human’s inability to process all sources of information simultaneously, and must, 

therefore, decide on which sources to attend to.  Appropriate allocation of attention is considered 

a function of the current tasks defined by the Decision-Making function downstream, so that 

more attention is allocated to the information resources that are directly relevant to the current 

tasks and procedures.   

The Sensory Processing subcomponent represents the physical sensor modeling in 

SAMPLE. This data includes an overall view of the world, including accumulated data from 

visual, audio, and, for some agents, a host of other sources. In the flight domain, this might 

include various sensor readings supplying information about weather or traffic conditions, along 

with communications received from ATC. This data is filtered according to information 

requirements specified by attention allocation.   

The Perceptual Processing subcomponent acts as a domain-relevant interpreter for the 

sensory information output, searching the available information for specific events relevant to 

the environment and current situation, and fusing this data into a host of relative perceived 

events. For example, one might search all incoming messages to determine if an expected 

message has been received, so that message can be interpreted as needed.  

The Situation Assessment module generates a high-level interpretation of the operational 

situation, as a function of perceived events and situational memory. Situation assessment is 

performed via a cognitive matching of low-level detected events and high-level representations 

of the current state in a context-sensitive manner.  Examples of tasks performed by this system 

might include air traffic conflict detection, threat identification and prioritization.  
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The assessed situation feeds the Decision Making and Procedure Execution module. The 

Decision Making subcomponent emulates a human’s rule-based decision-making behavior to 

select a procedure to implement, feeding rules available in the decision rule memory with the 

overall assessed situation.  The resulting decisions feed the attention allocator, defining the 

information required to support the selected procedure implementations.  

The Procedure Execution subcomponent translates high-level decisions into the required 

low-level motor actions or communications that implement selected procedures.  Details of the 

actions that make up a high-level procedure are maintained in the procedure memory. One 

important task performed in procedure execution in any multi-agent system is the inter-agent 

communications. The SAMPLE inter-agent communication model is based on the military 

Command and Control Simulation Interface Language (CCSIL), as this was directly relevant in 

the original domain for which SAMPLE was developed, modeling air-to-air combat pilots. In the 

future, a more generic approach to inter-agent communications (e.g. the Knowledge Query 

Manipulation Language, or KQML (Finn, Labrou & Peng, 1998)) may be integrated into the 

architecture.   

Agent-Based Collaborative Decision-Making via Principled Negotiation 

Though several approaches to the collaborative decision-making process could prove useful 

in advanced ATM modeling (Guarino, Harper, White, Omartian & Zacharias, 2001), we selected 

a particular form of negotiation through bargaining to define the ATM system configuration in a 

decentralized control paradigm.  Principled negotiation (Wangermann & Stengel, 1996) 

considers the individual needs and preferences of all agents involved in a decision-making task.  

It relies on the notion of mutual gain in defining options: agents drive their search for acceptable 

solutions by considering not only their own needs and preferences (e.g., aircraft performance 

constraints, or minimizing delays and fuel burn), but also those of other agents affected by the 

solution and overall system constraints (e.g., restricted airspace).  By proposing solutions and 

reporting acceptances or rejections, agents bargain to reach an acceptable solution.  For example, 

consider the case where a pair of aircraft must perform a strategic conflict avoidance maneuver.  

The principled negotiation model would have both pilots negotiating a solution that would not 

only avoid a protected zone conflict, but would also minimize each aircraft’s deviation from its 

original flight plan. 
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Principled negotiation is carried out through an iterative optimization method within each 

agent’s decision-making model, as shown in Figure 2 (Wangermann & Stengel, 1996).  One of 

four outcomes are possible: 

1) Propose an option: An agent searches for a solution beneficial to itself and poses it to the 

group; 

2) Accept the option: All other agents review the proposed option and accept it if it is 

considered better than any currently considered option; 

3) Reject the option: The proposed solution is rejected if it is considered less beneficial that 

another option by any agent; 

4) Instruct agents to implement the option: Once an option has been accepted by all agents, 

the proposing agent instructs the group to proceed with its implementation 

Jacolin and Stengel (Jacolin & Stengel, 1998) present a division of negotiating behavior between 

maximizing agents and satisficing agents.  Maximizing agents search for solutions that are not 

only acceptable but are optimal with respect to some utility function.  Satisficing agents, 

however, do not try to optimize in any sense.  Rather, they accept any presented solution that 

satisfies some constraint boundaries, but do not optimize performance within those boundaries.   

Jacolin and Stengel (1998) suggest that, in the ATM domain, pilots and airlines would likely 

act as maximizing agents, attempting to optimize performance according to cost in time, fuel, 

etc.  ATC, however, would likely behave as a satisficing agent, accepting any proposed solution 

that meets the requirements of overall system safety.  We implemented the Wangermann and 

Stengel model of principled negotiation within our agent-based representations of pilot, ATC, 

and airline dispatcher behavior, and extended the model to adjust the negotiating behavior of the 

agents as a function of ATM system configuration parameters.  These extensions to the model 

are intended to represent the heterogeneous nature of individuals within the ATM system, in 

terms of roles and responsibilities, as well as capability (as a function of equipage, for example). 

MODELING APPROACH 

We now present the results of our agent-based modeling approach for distributed decision-

making within the ATM system of the future.  We first describe our approach to model 

development through knowledge engineering (KE), and then present the results of KE exercises 

to represent the distributed roles and responsibilities of the key players in the ATM system. 

 7



  Harper et al.   

Model Development via Knowledge Engineering 

Developing computational cognitive models via knowledge engineering is a two-stage 

process.  The first stage consists of a Cognitive Task Analysis (CTA), which takes a problem or 

domain area and extracts the relevant SA information requirements.  These requirements are 

defined as the dynamic information needs associated with the major goals and sub-goals that 

pilots, ATC, and airline dispatchers must perform.  To identify these requirements, we applied a 

goal-directed task analysis based on the methodology of Endsley (1993).  This approach involves 

four steps: 1) identify the key decision makers associated with the domain (e.g. pilot, ATC, and 

dispatcher); 2) identify the major goals for each decision-maker, along with the major sub-goals 

necessary for meeting each of these goals; 3) identify the primary decisions that needed to be 

made for each sub-goal; and 4) identify the SA information requirements (e.g., data needed, how 

information is integrated, combined, etc…) for making these decisions and carrying out each 

sub-goal.  

The second stage of model development uses the identified SA information requirements and 

integrates it within the simulation environment, accounting for data availability (e.g., FACET 

provides access to flight plan information but no knowledge of runway conditions at destination 

airports) to construct a Computational Cognitive Model. Effectively, this effort is geared towards 

translating the CTA results into a computationally accessible representation.  In our case, the 

goal is to generate SAMPLE component-based representations of the information processing, 

situation assessment, and decision-making tasks dictated by the CTA results.  There are three 

aspects to this translation.  First, the information requirements must be analyzed to determine the 

key events and associated information processing needs.  For example, raw distance measures 

must be converted into semantically relevant measures such as “below minimums,” “near 

minimums,” and “above minimums”, which humans typically use. 

Next, computational SA models are constructed to process the events to generate situation 

awareness.  This involves analyzing the assessment and determining what is the most appropriate 

technology or algorithm (e.g. Bayesian belief networks) to relate the assessment (e.g. weather 

risk) to the identified events (e.g. thunderstorm type and distance to flight path).  Considerations 

include robustness, uncertainty levels, and available processing capability. 
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The final module performs decision-making based on the assessed situation.  These decisions 

are the same ones identified in the CTA, so the objective here is to translate those decisions into 

computational representations of procedure implementations.   

It should be noted that validation and verification of the CTA results, and their corresponding 

transition into computational components within the SAMPLE architecture should be pursued 

through follow-up experiments with a population of SMEs.  While this effort has not included a 

significant validation of computational processes within the agent-based models, we recommend 

that future work include such a component.   

Knowledge Engineering Results 

The two-stage CTA and Computational Cognitive Model development processes were 

applied to the advanced ATM problem. First, the key decision makers within the advanced ATM 

operational environment were identified.  They are: 1) airline pilots; 2) air traffic controllers; and 

3) airline operations center (AOC) dispatchers.  Together, these three entities form a triad whose 

overriding goal is to safely and efficiently operate within the NAS.  To identify the major goals 

and sub-goals along with the major decisions and SA requirements for each group, knowledge 

elicitation interviews were conducted with practicing members of each group.  In the case of 

pilots and ATCs, existing SA analysis by Endsley (1998; 1994) was used and supplemented with 

additional interviews and visits to actual facilities (for ATC).  We, therefore, focused on 

applying the aforementioned two-stage model development via a knowledge engineering process 

to identify the information needs of AOC dispatchers.  The final results comprise three 

computational cognitive models, which model human decision-making behavior for pilots, 

ATCs, and AOC dispatchers.  We now present summary of results from Endsley  for pilots 

(1998) and ATCs (1994) along with a more detailed description for AOC dispatchers that 

directly resulted form this effort. 

KE Results for Commercial Airline Pilots 

Commercial airline pilots are in command of the aircraft and crew, and are responsible for 

the safety of the passengers and plane.  Federal Aviation Regulation (FAR) section 121.533 

states that “during flight, pilots have full control and authority in the operation of the aircraft 

without limitation.”  Based on many hours of interviews, Endsley (1998) found that pilots have 

one overriding goal of safely transporting the plane from the origin to the destination.  As shown 

in Figure 3, Endsley found that pilots have four major sub-goals, namely 1) select best path to 
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destination; 2) execute desired flight path safely, efficiently, and with acceptable ride comfort; 3) 

manage resources effectively; and 4) satisfy the customer. 

To study agent-based models of air traffic management, we focused on addressing the CTA-

identified major decisions and SA requirements associated with the first two sub-goals. With 

respect to selecting the best path to the destination, our agents make decisions and require SA 

information regarding assessing a flight plan (“is the flight plan safe?”), determining changes to 

the flight plan (“how should I maneuver to avoid a traffic conflict?”), and re-planning the flight 

path.  With respect to executing a desired flight plan, the agents evaluate and execute a flight 

plan, avoid conflicts (“am I in conflict with another plane?”), avoid hazardous weather (“am I in 

conflict with weather?”), and minimize the impacts of abnormal ATC situations (“fly around a 

special use airspace”).  A pilot agent also addresses requirements associated with the third sub-

goal shown in Figure 3.  For example, a pilot agent may inform its corresponding AOC 

dispatcher of any potential flight plan changes if they are considered significant and the pilot 

deems it necessary to consult with the dispatcher. 

KE Results for ATC 

Air traffic controllers are responsible for managing traffic flows and keeping airplanes within 

established minimum separation levels. Similar to commercial airline pilots, Endsley (1994) 

found that ATCs have one overriding goal – assure flight safety.  Figure 4 shows the 

corresponding sub-goals, which ATCs try to achieve: 1) avoid conflicts; 2) provide flight 

service; and 3) handle perturbations.   

From a CTA perspective, we focused primarily on avoiding conflicts and to a lesser degree 

providing flight service and handling perturbations.  Thus, we include some of the major 

decisions and SA information requirements associated with separating airplanes (“are the 

vertical or lateral separation requirements met?” and “what is the time to separation loss?”) and 

avoiding airspace conflicts (“what airspace should be avoided and which pilots need to be 

contacted?”).  To address the issue of providing flight service and handling perturbations, we 

focused on implementing decision-making capability to determine the impact that a potential 

maneuver will have on other entities within the airspace and when a sector should be locked due 

to traffic density. 

KE Results for Airline Operations Center (AOC) Dispatchers 

 10



  Harper et al.   

An AOC dispatcher is the third player in the FAR specified concept of the operations triad.  

Whereas ATC are specifically tasked to avoid traffic conflicts and pilots are tasked to operate the 

vehicle from the origin to the destination, the dispatcher is charged with developing a safe flight 

plan and monitoring all risks and hazards that may jeopardize or compromise the safety of the 

flight plan.   

Similar to ATCs and pilots, a dispatcher’s major goals and sub-goals are directly related to 

the FARs.  In particular, the identified major goal of the dispatcher is the creation and 

maintenance of a safe plan of operation for each flight, as dictated by FAR 121.533 - 

Responsibility for Operation Control: Domestic Operations. Based on the FARs, our KE study 

produced a cognitive task model that consists of three major sub-goals that contribute to the 

single major goal of creating and maintaining a safe plan of operation.  As shown in Figure 5, the 

three major sub-goals are: 1) initiate a plan; 2) conduct a flight; and 3) terminate a flight.   

With respect to Initiating a Plan, the dispatcher first creates a plan that avoids hazards, is 

cost-effective, and meets federal rules and regulations.  Then, according to FAR 121.533, the 

dispatcher and pilot must jointly agree on the plan.  In creating the plan, the dispatcher uses 

metrological data to forecast thunderstorms (TS), clear air turbulence (CAT), low-ceiling 

visibility, low-level adverse wind conditions, and icing conditions to develop a safe route. These 

predictions are used to answer key questions such as “should the plane depart?”, “is the chosen 

route safe and acceptable?”, “is the landing site acceptable?”, and so on. The dispatcher must 

also ensure that the chosen plan meets federal rules and regulations regarding such items as 

takeoff and landing alternates, e.g. “is a destination alternate required?”, as well as requirements 

regarding minimum fuel, acceptable takeoff weight, and performance and certification 

limitations. 

Once the aircraft is airborne, the dispatcher’s primary sub-goal is Conducting the Flight.  

This is accomplished via two primary tasks, which are monitoring and re-planning the flight.  In 

the monitoring task, the assessments and decisions are made to: 1) assess the pilot’s intent (“is 

the pilot following the flight plan?”); 2) assess the overall system safety (“is the system safe and 

what is the reason for risk?”); 3) assess the viability of the landing options (“are the runways 

acceptable for landing?”); 4) handle pilot and passenger requests; 5) evaluate potential ATC re-

routes (“what are the results of ATC delays and holding patterns on the flight?”); 6) evaluate the 

impact of mechanical failures (“can plane safely and legally continue on current flight plan with 
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a given failure?”); and 7) inform the pilot of potential hazardous or risky flight conditions.  In the 

re-planning task, the dispatcher uses the assessments from the monitoring tasks to: 1) determine 

suitable airport to land (if necessary) and 2) generate a plan to eliminate or minimize the effects 

of the identified hazards, risks, and system changes on the flight. 

The third and final sub-goal is Flight Termination.  Here, the dispatcher analyzes risk and 

hazard data to determine if the flight should be terminated due to unsafe conditions, which may 

include weather or instrument or equipment failure.  According to FAR 121.627, the dispatcher 

may not allow a flight to continue if in the opinion of the dispatcher the flight cannot be operated 

safely.  As indicated in Figure 5, our KE analysis did not focus on flight termination.   

Software System Architecture 

Figure 6 presents the overall architecture of our proposed agent-based model of pilot, ATC, 

and airline dispatcher performance under advanced ATM operations, building directly on our 

previous prototype design (Harper et al., 1999). The system contains the following key 

components: 

• Analytical models of the pilot, air traffic controller (ATC), and airline dispatcher agents, 

representing the key activities of air traffic situation assessment, collaborative decision-

making and plan execution 

• The ATM executive, which models the NAS environment (airspace configuration, flight 

rules, separation criteria, etc.) 

• The FACET air traffic simulator, which models the dynamics of each represented aircraft 

The pilot agent is instantiated N times, to represent N aircraft operating within the simulation. 

Each of these aircraft communicates with other aircraft and with one ore more ATC and 

dispatcher agents via simulated voice and datalink, as required. The problem of multi-agent air 

traffic conflict resolution is handled by a simulated negotiation process among agents affected 

by a potential conflict or weather hazard. 

The agent architecture contains three key components, as follows: 

1) Air Traffic Situation Assessor: In high-stress, time-critical situations, expert decision-

makers focus their attention on the task of assessing the situation based on information 

gathered from available resources (Klein, 1989). In the ATM domain, this entails the 

collection of information about potential traffic hazards from sensor data and known or 
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requested intent information, and the fusion of that information into a global picture of the 

current and projected state of the air traffic sector (either in the vicinity of an aircraft or in 

some fixed region of airspace).  

2) Collaborative Decision-Making Module: Once individual agents have developed an 

understanding of the current and projected air traffic situation, any predicted conflict 

problems must be solved. Since the air traffic system is highly coupled (i.e., actions by one 

aircraft affect many others), the conflict resolution process must be carried out in a 

distributed manner, such that all users’ interests are represented in the solution, and all users 

are aware of how the solution will affect their own plans. This is accomplished by carrying 

out a collaborative decision-making process where everyone’s interests are represented (to 

the degree possible) in the chosen solution. This collaboration is based on the exchange of 

information throughout the problem-solving exercise by voice and datalink.  

3) Plan Execution: The plan execution function takes in a flight plan representation and defines 

the control variables required to adhere to it. For pilots, this entails updating waypoint 

definitions to include new details of their flight plan. ATC must assess the negotiated 

solution to identify any aircraft that are affected by it that may not have received the updated 

plan, and inform them of the updates. 

Simulation of Advanced ATM Environment 

We now present our approach to integrating the target agent-based models of pilot, air traffic 

controller, and airline dispatcher behavior within the simulated NAS system provided by 

FACET.  First, we highlight some of the modeling capabilities provided by FACET that were 

particularly useful in supporting our objectives.  We then discuss the added modeling capability 

that we provided within the FACET simulation environment to model weather cells and 

restricted airspace, which allowed us to examine our developing agents’ capabilities to detect 

and resolve a wider array of airspace issues.  Finally, we discuss our implementation of a high-

level “agent manager” entity that support the real-time performance of the integrated system. 

Modeling the National Airspace System 

The Future ATM Concepts Evaluation Tool (FACET) is an air traffic management research 

tool developed at NASA Ames Research Center (Bilimoria et al., 2000). It was designed to 

provide a simulation test environment for the evaluation of advanced ATM concepts, since the 

architecture supports straightforward integration of air-traffic analysis applications.  
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As a tool developed for testing advanced ATM concepts, FACET, shown in Figure 7, is an 

ideal simulation environment for the evaluation of our principled negotiation model for future 

decentralized ATM operations. FACET incorporates many of the important features of our 

previous in-house graphical user interface (Guarino, Harper & Zacharias, 2000; Harper et al., 

1999). In addition, FACET has some advantages over our in-house system. For instance, it 

operates on a variety of platforms, including SGI IRIX and Microsoft Windows environments. 

FACET has a more accurate depiction of the airspace over the continental US, allowing us to 

implement scenarios of much larger scope, and account for the configuration of the NAS system. 

Furthermore, it implements low-cost models of aircraft dynamics that allow for large scenarios 

involving many aircraft capable of real time performance. 

The FACET software environment also provided significant flexibility with respect to 

integrating our agent-based models of human behavior within the ATM system.  The existing 

separation of graphical functionality implemented in Java, and computational functions in C, 

with a Java Native Interface (JNI) bridge between the two, provided an easily extended software 

architecture for the integration of our agent models.  The SAMPLE agent framework was 

implemented within a stand-alone C++ library, and a second JNI interface was developed to 

integrate it within the FACET architecture. 

Modeling Restricted Airspace within FACET 

One of the primary objectives of the agent development effort was to implement the 

capability to negotiate not only air traffic conflict resolutions, but also weather avoidance 

maneuvers.  To support this objective, we developed an independent weather representation 

within the FACET environment. 

In choosing a weather representation, we explored many options, trying to maximize realism 

while still maintaining maximal customizability and computational simplicity.  With the ability 

to adapt the FACET polygon avoidance algorithm, weather represented as polygonal prisms 

received early and serious consideration.  Fortunately, a polygonal prism representation of 

weather also affords much customization; the number of vertices is variable, simply changing the 

location of one or more vertices can modify the shape and position, and cell tops and bottoms 

naturally fit well with the ends of the prism.  Polygonal prisms also allow for much simpler 

calculations than ellipsoids or spherical shapes, thus increasing the real-time performance of the 

simulated weather representation.   
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Restricted areas, prohibited areas, military operations areas, and other special use airspaces 

usually have polygonal boundaries.  Given that special use airspace (SUAs), much like severe 

weather, present dynamic obstacles to safe flight, a common representation for the two would 

allow for additional modeling of dynamic SUAs within our principled negotiation framework.  

For these reasons, we elected to use polygonal prisms as a generic “spatial region” that can be 

modified to represent thunderstorms, clear air turbulence, or SUAs. 

In addition to vertical and lateral boundaries, weather and turbulence areas have an 

associated severity level.  For thunderstorms, severity is listed on a ten point Video Integrated 

Processor (VIP) scale, with severities less than 3.0 appearing as green or light intensity, 

severities between 3.0 and 5.0 appearing as yellow or moderate intensity, and 5.0 or greater 

appearing as red or severe intensity.  Turbulence regions also use a 10-point scale with the same 

categorization as thunderstorms, but not a VIP scale since turbulence assessments are based on 

pilot reports (PIREPs) as opposed to sensor reports.  Special use airspace does not require such a 

severity level, as we assume that all special use airspaces are no-fly zones.   

Spatial regions are defined by inputting coordinates, severities, and altitudes in a data file, 

and then loading it from FACET by selecting CRA Weather from the CRA Applications 

submenu of the Applications menu, as described in Appendix …  The user defines the weather 

cell’s vertices at user-defined simulation times.  Therefore, one can easily change the shape and 

location of a weather cell simply by setting the vertices to new values at a different simulation 

time in the input file. 

Supporting Real-Time Performance 

The computational requirements of the developed agent-based representations of human 

decision-making behavior are intensive.  Since the developing agent-based models of human 

decision-making are complex systems that integrate many AI techniques to effectively produce 

cognitively congruent behavior in real time, they are computationally expensive.  To support the 

real time simulation of an interesting demonstration scenario, we need to be able to populate the 

airspace with many aircraft and model multiple air traffic control sectors.  To instantiate an agent 

on-board every aircraft and in every represented sector would dramatically reduce our potential 

for real-time performance.  Since, at any point in the simulation, it is expected that the number of 

players actually engaged in a negotiation process to solve a perceived problem is likely small, we 

chose to implement a high-level “agent manager” entity, the purpose of which is to perform 
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cursory conflict detection and weather analysis, and to instantiate agents to represent players that 

may be required to negotiate conflict resolution or weather avoidance maneuvers.  When a 

potential conflict situation or weather hazard is detected by the agent manager, it constructs 

individual agent representations for the players it determines are affected by the hazard.  At the 

very least, this includes the aircraft involved in the conflict situation.  Depending on the 

communication structure ruleset, described previously, it may also generate an air traffic 

controller agent in each aircraft’s current sector, or in the sector containing the perceived point 

of conflict.  Throughout the negotiation process, agent can request that other representatives be 

generated to assist in solving the problem.  For example, if a maneuver is proposed that would 

require a pilot agent to deviate significantly from its current flight plan, then that pilot might 

request that the agent manager construct a new agent representing its airline dispatcher.  Once 

that agent was generated, the pilot would confer with the dispatcher agent to determine whether 

the proposed maneuver is acceptable. 

EXPERIMENTAL APPROACH 

Through the modeling effort presented here, we have developed an integrated simulation-

based toolkit for the analysis of advanced distributed ATM operations.  This analysis capability 

includes specific human behavioral representations of the key decision-makers in the future 

ATM environment, namely the commercial pilot, air traffic controller, and airline dispatcher.  

Agent-based models of their decision-making behavior within a candidate distributed decision-

making framework (principled negotiation) have been developed and demonstrated.  However, 

the integrated analysis tools have been designed and developed within a flexible architecture that 

allows for the extension and enhancement of the constituent modeling components within the 

agent representations.  It is the flexibility of this architecture that provides the basis for the 

simulation-based toolkit for further analysis of advanced ATM operations. 

One potential research question that naturally arises from the distributed decision-making 

approach taken in the agent development process is focused on the complexity of the predicted 

future ATM environment.  How often will the need arise for multiple decision-makers to engage 

in complex negotiation to resolve perceived problems in the airspace?  In standard airspace 

operations, most two-aircraft conflicts, for example, can be resolved through a simple even split 

of flight plan deviations that will generate the requisite 5 mile separation.  It is expected that 

only in particularly complex situations with high traffic density, or significant airspace 
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restrictions due to weather or SUA usage, will it be necessary to generate resolution maneuvers 

more complex than the simple even split.   

To investigate this question in a simulation-based analysis, we have developed a realistic air 

traffic scenario based on recorded data from Jacksonville center (ZJX).  This scenario is 

constructed from analysis of ETMS data, real-time weather track data, and SUA dynamics.  The 

ETMS data has been pre-processed to identify specific maneuvers by individual aircraft that 

were implemented to avoid potential conflict or weather hazards, and original flight plan 

information was extrapolated from the processed information.  The simulated airspace within 

FACET was then populated by aircraft with their original flight plans, and the recorded weather 

and SUA data.  The scenario was run without the agents, and specific problems were identified, 

including traffic conflicts, weather hazards and SUA conflicts.  The same scenario was then 

populated with our agent-based models of pilot, ATC, and airline dispatcher behavior.   

First, we demonstrate that the agents are, in fact, capable of resolving these issues through 

distributed decision-making.  Furthermore, we analyze the results of the negotiation-based 

process to conflict resolution, and identify the nature of the selected resolutions maneuvers.  For 

those negotiation processes that finish in an even split of flight plan deviations across two 

aircraft, we conclude that in-depth negotiation was not, in fact, necessary to resolve those issues.  

Rather, an on-board automated system employing a sophisticated conflict resolution algorithm 

could have sufficed in place of multi-agent negotiation.  However, for those negotiations that 

generate uneven flight plan deviations, for example, we conclude that automated conflict 

resolution algorithms may not suffice to solve these complex problems in the future ATM 

operational environment.   

Author’s Note: We are in the process of generating a realistic air traffic scenario focused on 

operations in Jacksonville Center (ZJX), as described.  The scenario will be based on recorded 

traffic data, weather data, and SUA operations over a typical period of ZJX air traffic 

conditions, likely spanning a period of several hours of operations.  Scenario details, as well as 

results of post-run analysis will be presented in the final paper. In the meantime, we present 

results from a contrived scenario used simply to demonstrate the agents’ negotiation behaviors 

and conflict resolution strategies. 

In the demonstration scenario, we set up a case of two aircraft flying head on towards each 

other and into an integrated set of weather cells of varying severity, as shown in Figure 8.  
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Initially, the two aircraft are not in a conflict situation.  However, they are each predicted to 

enter unacceptable weather (the yellow and red weather cells).  As a result, each pilot agent 

initiates a negotiation process with the ATC agent representing the first sector where a weather 

hazard is predicted to occur.  These two separate negotiation processes are independent.  Both 

pilots generate weather hazard avoidance maneuvers, as shown in Figure 9.  However, the 

implementation of these weather avoidance maneuvers generates a potential traffic conflict 

between the two aircraft.  As a result, the two pilots now negotiate a solution to this new traffic 

conflict, and solve it, as shown in Figure 10. Interestingly, the result of this traffic conflict 

resolution negotiation is a set of conflict avoidance maneuvers where one aircraft’s maneuver 

produces 90% of the required separation, while the other produces only 10%.  This is due to the 

added constraint imposed by the easternmost yellow weather cell.  Throughout the traffic 

conflict resolution, the weather cells are represented as spatial constraints upon which neither 

aircraft may encroach.  As a result, the aircraft coming from the east is not able to produce the 

even split in the traffic conflict resolution maneuver, and true negotiation is required to generate 

the final result.  The events that lead to solving the weather and traffic conflicts throughout this 

scenario are listed in Table 1.  This constitutes a simple air traffic scenario, and it is intended 

only for demonstration of the conflict detection and resolution capabilities of the agents through 

principled negotiation.  We have developed more complex, yet still contrived traffic scenarios to 

demonstrate additional capabilities for conflict prioritization, parallel negotiation, etc. 

CONCLUSIONS 

We have developed an effective representation of a potential collaborative decision-making 

behavior for the perceived future ATM operational environment.  This involved a process of 

knowledge elicitation (KE) with Subject Matter Experts (SMEs) to understand the issues and 

processes involved in current and projected ATM operations from the unique perspectives of 

commercial pilots, air traffic controllers and airline dispatchers.  We then translated a subset of 

that KE information into computational models of the key cognitive processes of information 

processing, situation assessment and procedurally-driven decision-making. Furthermore, we 

integrated these cognitive processes within an overarching representation of collaborative 

decision-making based on principled negotiation.  

Author’s Note: Additional concluding material summarizing the results of the ZJX 

experiment will be incorporated here. 
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Under follow-on work, we recommend an effort that focuses on the further extension of the 

computational representations of the tasking undertaken by each of the identified key players.  

The selection of tasks that have been implemented under this effort was largely driven by data 

availability from the selected air traffic simulation environment.  If additional capability was 

provided by the simulation, in terms of added data as well as higher-fidelity representation of 

aircraft dynamics, then additional cognitive modeling would become relevant and interesting.  

For example, the pilot and airline dispatcher have additional objectives associated with 

maintaining passenger comfort as well as the safety of the flight and the airspace operations.  

However, with the limited representation of aircraft performance, it is difficult to include these 

concepts effectively, and therefore, meaningfully.  So, through an enhancement effort with 

respect to the level of fidelity provided by the simulation environment, we could set the stage for 

significant added capability in the cognitive modeling arena. 

The focus of this effort was on generating a broad set of cognitive modeling capabilities 

across the key decision-makers in the advanced ATM environment.  An appropriate follow-on 

effort should expend significant effort on the validation of these models in both a quantitative 

and qualitative analysis. 

Finally, it has become clear that large-scale optimization of the operations within the 

projected collaborative ATM environment of the future will focus not only on the individual 

pilots, air traffic controllers and airline dispatchers, but will also include additional ATM 

players.  Higher-level Traffic Management Unit (TMU) personnel will play a critical role.  

While our approach was to include a representation of these higher-level objectives within the 

ATC agent model, it is expected that a higher-fidelity representation of TMU objectives and 

behavior would have a significant effect on the overall performance of the ATM system.  We 

have also limited our modeling capability to the enroute environment.  Additional representation 

of the complexities of the terminal airspace is required to support appropriate end-to-end system 

study and design. 
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Figure 1: SAMPLE’s Staged Model of Skilled Human Behavior 
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Figure 2: Principled Negotiation (Wangermann & Stengel, 1996) 
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Figure 5: Top-Level Dispatcher Goals and Tasks 

 26



  Harper et al.   

ATM
Executive

Simulation Graphical User Interface

ATC Facility Aircraft Airline Operations Center

Air Traffic
Situation
Assessor

Collaborative
Decision-
Making

Plan
Execution

Sensor Information
and Flight Plan

Control Channel

Air Traffic Controller Agent

Air Traffic
Situation
Assessor

Collaborative
Decision-
Making

Plan
Execution

Sensor Information
and Flight Plan

Control Channel

Pilot Agent

Air Traffic
Situation
Assessor

Collaborative
Decision-
Making

Plan
Execution

Sensor Information
and Flight Plan

Control Channel

Airline Dispatcher Agent

Voice &
Datalink

Voice &
Datalink

Airspace
Configuration

Future ATM Concepts Evaluation Tool

 

Figure 6: Overall System Architecture 
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Figure 7: FACET Scenario 
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Figure 8: Initial Conditions 
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Figure 9: Weather Conflicts Solved, Causes Traffic Conflict 
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Figure 10: All Conflicts Solved 
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Table 1: Event Table for Solving Combined Weather/Traffic Conflict 

Time Action 
1:37 NASA1 detects weather conflict and creates a negotiation to solve it.  
1:41 NASA2 detects weather conflict and creates a negotiation to solve it.  
--- NASA1 negotiates with ATC91 and dispatcher to reach an acceptable solution. 
--- NASA2 negotiates with ATC94 and dispatcher to reach an acceptable solution. 
2:59 NASA1, upon receiving approval from ATC91 and dispatcher, implements a solution to bypass the weather 

conflict. 
3:06  NASA2, upon receiving approval from ATC94 and dispatcher, implements a solution to bypass the weather 

conflict.  
3:35 NASA2 detects traffic conflict with NASA1 and creates a negotiation to solve it.  
--- NASA2 negotiates with NASA1 and ATC95 to reach an acceptable solution. 
4:44 NASA2, upon receiving approval from NASA1 and ATC95, informs NASA1 of ATC approval and implements 

its part of the solution.  
4:45 NASA1 implements its part of the solution created by NASA2.  
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